Enrollment No:	 Exam Seat No:	

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Engineering Mathematics-III

Subject Code: 4TE03EMT1 Branch: B.Tech (All)

Semester: 3 Date: 20/03/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14)

- a) State Dirichlet's conditions for Fourier series. (02)
- b) State second shifting theorem. (02)

c) Find:
$$L(4-\sin^2 t - \cos^2 t)^3$$
 (02)

d) Solve:
$$(D^3 + D)y = 0$$
 (02)

e) Find:
$$L(t^4e^{3t})$$
 (02)

f) Solve:
$$r - s - 6t = 0$$
 (02)

g) Derive the iterative formula for finding the reciprocal of positive number N by Newton-Raphson method. (02)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(14) (07)

a) Obtain the constant term and the co-efficient of the first sine and cosine terms in the Fourier expansion of y as given in the following table:

х	0	1	2	3	4	5
у	9	18	24	28	26	20

Solve the differential equation $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$; $u(0, y) = 8e^{-3y}$ by the method of separation of variables.

Page 1 of 3

Q-3 a)	Attempt all questions Obtain Fourier series for $f(x) = x + x^2$ in $(-\pi, \pi)$.				
b)	1				
c)	Solve: $(D+1)^2 y = \sinh x$				
Q-4	Attempt all questions				
a)	x+2 0 < x < 1				
b)	State convolution theorem and using it find $L^{-1}\left(\frac{1}{(s-2)(s+2)^2}\right)$.				
c)	Find the general solution of the differential equation $(y+z)p+(z+x)q=x+y$.				
Q-5	Attempt all questions				
a)	Solve the differential equation $(D^3 - 6D^2 + 12D - 8)y = \frac{e^{2x}}{x}$ by the method of				
b)	variation of parameter. Solve: $(D^2 - 1)y = x \sin 3x$				
c)	Evaluate: $\int_{0}^{\infty} t e^{-2t} \cos t dt$				
Q-6	Attempt all questions				
a)	Find Laplace transformation of $\sin 2t$ and $\cos 2t$ by using the definition of it.				
b)	Find the root of the equation $x^3 - x + 1 = 0$ by bisection method up to three decimal places.				
c)	Obtain a cosine series for the function $f(x) = e^x$ in the range (0,1).				
Q-7	Attempt all questions Solve the differential equation $(D^2 + 2D + 5)y = e^{-t} \sin t$, $y(0) = 0$, $y'(0) = 1$ by using				
a)	laplace transformation.				
h)	Find the mosts of equation and usual. Obviousing secont method comment up to four				

Q

b) Find the roots of equation $\cos x - xe^x = 0$ by using secant method correct up to four decimal places.

c) Find: $L^{-1}\left(tan^{-1}\frac{2}{s^2}\right)$ (03)

Q-8 Attempt all questions

(14)

a) Solve:
$$(x^2D^2 + 5xD + 3)y = \frac{\log x}{x^2}$$
 (05)

- Solve: $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$, given that $\frac{\partial z}{\partial y} = -2 \sin y$ when x = 0 and z = 0 when y is an odd multiple of $\frac{\pi}{2}$.
- c) Form the partial differential equation F(x+y+z, xyz) = 0. (04)

